
Brian Ball
SEP

Network and Development
Computer Engineer

Web Developer
Perl
Ruby
Java
C#

myotherpants.com

1

When all you
have is a

hammer ...

sheeshoo @ flickr

2

Who here is an Object-Oriented Programmer?
Is an algorithm an Object?
We tend to frame things in an object oriented context. That’s what we know.
Some problems are more functional-based, algorithmic, recursive.
Functions give you a different set of blocks with which to build.

F#
Functional Programming in the .NET Framework

3

This gives you access to the CLR and interplay with all of your existing .NET objects, libraries, and
programs. You can choose when you need the power and flexibility of functional programming, or
when you need OOP.

Where do I get It?

msdn.microsoft.com/fsharp

4

VS Shell

download
install

run isolated mode
quit

install F#
Run F# Express

5

Download and run VS Shell BEFORE installing FSharp

What is Functional?

λ
6

Actions as components of composition

Don’t fear the lambda

Nouns
Verbs

7

Composition of Objects
Eddie Izzard is...

Beard
Eyes
Hair
Mouth
Ears
Nose

8

The oo way is to view the world as a jumble of objects.

brian.Kick(bucket)

9

This this the OOP way. I have an object, brian, who was an associated method, kick, that can act
upon several objects.

Verbs
Nouns

10

Functional is about verbs that act on nouns.
Nouns can still be OO, in F Sharp, but the verbs are where you’re focusing.

Composition of
Functions

Eddie Izzard is ...
Running
Jumping
Climbing Trees

11

kick brian bucket

12

Magic

13

As they say in MIT, it’s magic.
Abstractions on abstractions until you get to something so simple, it actually works.

http://swiss.csail.mit.edu/classes/6.001/abelson-sussman-lectures/

Functional Design

• What are the values to represent

• What are the operations to build,
understand, combine, or transform these
values

• What equations and algebraic properties
hold between these values

14

Syme et al: p553

What You Keep From
OO

• DRY

• Single Responsibility

• Liskov Substitution Principle

• Law of Demeter

15

DRY - If you use a function once, you can use it many times. Functions as values allow you to
quickly and naturally create the equivalent template methods or the strategy pattern

Single Responsibility - Self explanitory

Liskov - Differently, no inheritance, but you can think of functions that serve a type of purpose.
SQRT estimation example

Law of Demeter - Clean layers of abstraction. Don’t leak them. Yes, functions ARE in fact
abstractions. Also, your data blobs.

Defining a function
or other bit

let double n = n * 2

let PI = 3.1419

16

let double n = n * 2

And for something recursive?
let rec factorial n =

 match n with

 | 1 -> 1

 | n -> n * (factorial n-1)

Immutability

x != x + 1

let x = x + 1
let x = ref (new Tiger())
let mutable x = 5
x <- x + 1

17

let x = x + 1
let x = new Tiger() ref
let mutable x = 5

I first found this in XSLT, threw me for a loop. Then I read Joe Armstrong’s rebuttle. x = x+1 really
bothers mathematicians.
Functional programming has a preoccupation with “Side-Effects”. If it WAS mutable, it would be
shared-state, and that’s why threading is so hard. Because of immutability, we know we don’t have
to worry about shared state

Wing and a Prayer

noelzialee @ flickr

18

Functional programming is also a wing an a prayer.
I’m going to do the same thing over and over and hope I find a place to stop.

You know it, you love it.

let rec factorial n =

 if n = 1
 then 1

 else n * (factorial n - 1)

19

Pattern Matching

let rec factorial n =

 match n with

 | 1 -> 1

 | n -> n * (factorial n-1)

20

You match the cases explicitly...

Pattern Matching
with Guards

let rec factorial n =

 match n with

 | 1 -> 1

 | _ when n > 1 -> n * factorial n-1

 | _ -> failwith “Factorial is only true for n > 0”

21

let rec factorial n =

 match n with

 | 1 -> 1

 | _ when n > 1 -> n * factorial n-1

 | _ -> failwith “Factorial is only true for n > 0”
We can also pull apart complex data structions, like lists or descriminating types, match on the
object’s signature, or create our on “active patterns” to perform operations like match a regular
expression.

Tail Recursion

chris_gin @ flickr

22

F# knows when to use the stack to call a function and when it doesn’t have to. This means you can
use recursive algorithms to search impractically large data structures, like generated streams...

Nested Functions

let factorial n =

 let rec helper n acc =

 match n with

 | 1 -> acc

 | _ -> helper (n-1) (n*acc)

 match n with

 | _ when n > 0 -> helper n 1

 | _ -> failwith “Factorial only holds for n > 0”

23

let factorial n =

 let rec helper n acc =

 match n with

 | 1 -> acc

 | _ -> helper (n-1) (n*acc)

 match n with

 | _ when n > 0 -> helper n 1

 | _ -> failwith “Factorial only holds for n > 0”

The outer function isn’t recursive. The nested has any name we want, and isn’t visible outside.

Anonymous Functions

(fun x -> x.StartsWith(y))

(fun (x:string) -> x.StartsWith(y))

24

(fun x -> x.StartsWith(y))

Notice the variable y? It’s a closure, it wraps values defined outside of it’s normal scope.

It’s actually a lie.
(fun (x:string) -> x.StartsWith(y))

 We’ll get into type inference in a little bit.

Inferred Types

let factorial (n:int) : int =
...

25

Remember factorial? What happens if we call factorial with a string, “blah?”
F# knows about the types these operations can perform. Infact, the only problem we have with
factorial is if we call it too large, we’ll have to deal with the fact an int doesn’t convert automagically
to a bigint.
If F# doesn’t know, like in our anonymous function example, we can tell it what types we expect.

let startsWithY = (fun (x:string) :boolean -> x.StartsWith(y))
let StartsWith (y:string) (x:string) :bool = x.StartsWith(y)

Functions as Values

List.map (fun x -> x*x) [1;2;3]

let makeItTwice = double

let double n = 2 * n

let ten = makeItTwice 5

let tripple = (fun x -> 3 * x)

List.map tripple [1;2;3]

26

List.map (fun x -> x*x) [1;2;3]
The anonymous function is passed in, like a “strategy” or “command” pattern.
Like passing in a “comparitor” in the String.Compare(method)

Currying
let theBoot = kick brian

27

Currying
let multiply a b = a * b

let makeItTwice = multiply 2

28

More Types

29

Discriminated Unions
Tuples

type Temperature =

 |Fahrenheit of int

 |Celsius of int

type Tree<’a> =

 |Tree of ‘a * Tree<’a>*Tree<’a>

 |Tip of ‘a

30

type Temperature =

 |Fahrenheit of int

 |Celsius of int

type Tree<’a> =

 |Tree of ‘a * Tree<’a>*Tree<’a>

 |Tip of ‘a

Functions have types

type scaleInteger = int -> int

type multiplyFunction = int -> int -> int

(a’ -> b’) -> a’ list -> b’ list

31

but it’s rare you’ll explicitly define function profiles.
But you do need to read the compiler hints.

Classes and Intefaces

type Vector2D(dx:float, dy:float) =

 let len = sqrt(dx*dx + dy*dy)

 member v.DX = dx

 member v.Scale(k) = Vector2D(k*dx, k*dy)

 static member Zero = Vector2D(dx=0.0, dy=0.0)

type IShape =

 abstract Contains : Point -> bool

 abstract BoundingBox : Rectangle

32

type Vector2D(dx:float, dy:float) =

 let len = sqrt(dx*dx + dy*dy)

 member v.DX = dx

 member v.Scale(k) = Vector2D(k*dx, k*dy)

 static member Zero = Vector2D(dx=0.0, dy=0.0)
type IShape =

 abstract Contains : Point -> bool

 abstract BoundingBox : Rectangle

.NET Interoperability

33

Some of the “infered” types are difficult to use, so your public interfaces need to be clean.

The VS doesn’t deal with “references” quite right, yet.

.NET Annotations

[<TestFixture>]
type Test() =
 [<Test>]
 member x.EmptyString() =
 Assert.IsTrue(isPalindrome(“mom”))

34

Yes, virginial, this is a full .NET language.

Concurrency

anirudhkoul @ flickr

35

Like they said in the Blues Brothers, “We got both kinds. Threads AND Asynchrony”

Threads

chefranden @ flickr

36

You know them. Moving on....

Asynchronous Workflows

Use Asynchronous API calls

Object.Begin*()

Seamless as possible

37

This is a wrapping for async calls that are already in the .NET apis

You know the ones, meant to handle blocking calls in SATA blocks.

Asynchronous Workflows
let fetchAsync(nm, url:string) =

async { let req = WebRequest.Create(url)
 let! resp = req.AsyncGetResponse()
 let stream = resp.GetResponseStream()
 let reader = new StreamReader(stream)
 let! html = reader.AsyncReadToEnd()
 do (printfn “Read %d characters for %s”
 html.Length nm) }

[fetchAsync (“IMA”, “http://imamuseum.org”);
 fetchAsync (“BoingBoing”, “http://boingboing.net”)]
|> Async.Parallel
|> Async.Run

38

The let! means we’re running a wrapper for begin and end async functions
The general form is a “workflow” that is extensible.

Oh, and the |> is the “pipe forward” operator that is the same as calling the functions backwards

http://imamuseum.org
http://imamuseum.org

Message Passing

“Actor Pattern”

No Shared State

Blocking on a Thread-Safe Queue
With Marshaling

39

Message Passing
type internal msg =

|Increment of int |Fetch of AsyncReplyChannel<int>
|Stop of string

let counter = MailboxProcessor.Start(fun inbox ->
let rec loop(n) =

async { let! msg = inbox.Receive()
 match msg with

|Increment m -> return! loop(n+m)
|Stop -> return
|Fetch reply -> do reply.Reply(n)
 return! loop(n) }

loop(0))
40

Message passing is a means of communicating to another data to another thread without sharing
memory. This reduces contentions of shared resources and eliminates the need for locks.
A mailbox is simple “Posted” with a message. The function inside the mailbox simply executes
what’s requested. Tail recursion keeps this from stacking out. the argument to the loop is the
mailboxe’s way of changing state.

This is similar to Erlang’s concurrency model with one exception, Erlang scales better, as in there is
no difference between mailboxes in the same thread or mailboxes on different continents. I’m sure
they’ll come up with a distributed mailbox model.

A Geeky Example

lonelyfox @ flickr

41

Roll 1d4 + 3d6 + 3
I want to parse dice rollcodes for a dice rolling application

Data Types

type tokenStream = token list

type token =
 |PLUS
 |INT of int
 |PERCENT
...

type output = token list * tokenStream

42

Parser
lookFor atoken

concat [number ; letterD ; side]
alternate [fulld ; singledie ; justanumber]

repeat plusNumber

normalizePercent someOutput
performAddition someOutput

43

Any function that takes an input stream and returns an output

Primitive proto parser - is this token the head of the input stream?

Operations to build parsers
combinations to build larger syntax
options in the syntax
repetition in the syntax

Simplify the output stream

